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Powerful Regression-Based Quantitative-Trait Linkage Analysis
of General Pedigrees
Pak C. Sham,1 Shaun Purcell,1 Stacey S. Cherny,1,2 and Gonçalo R. Abecasis3
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We present a new method of quantitative-trait linkage analysis that combines the simplicity and robustness of
regression-based methods and the generality and greater power of variance-components models. The new method
is based on a regression of estimated identity-by-descent (IBD) sharing between relative pairs on the squared sums
and squared differences of trait values of the relative pairs. The method is applicable to pedigrees of arbitrary
structure and to pedigrees selected on the basis of trait value, provided that population parameters of the trait
distribution can be correctly specified. Ambiguous IBD sharing (due to incomplete marker information) can be
accommodated in the method by appropriate specification of the variance-covariance matrix of IBD sharing between
relative pairs. We have implemented this regression-based method and have performed simulation studies to assess,
under a range of conditions, estimation accuracy, type I error rate, and power. For normally distributed traits and
in large samples, the method is found to give the correct type I error rate and an unbiased estimate of the proportion
of trait variance accounted for by the additive effects of the locus—although, in cases where asymptotic theory is
doubtful, significance levels should be checked by simulations. In large sibships, the new method is slightly more
powerful than variance-components models. The proposed method provides a practical and powerful tool for the
linkage analysis of quantitative traits.

Introduction

The Haseman-Elston (H-E) method of quantitative-trait
linkage analysis for sib-pair data is based on regression
of squared trait difference on the estimated proportion
of alleles shared identical-by-descent (IBD) at a marker
locus (Haseman and Elston 1972). This method has the
advantages of simplicity and robustness (Allison et al.
2000) but is less powerful than variance-components
(VC) models (Fulker and Cherny 1996). Several groups
have recently proposed modifications to the original H-
E method, to improve its power (Wright 1997; Driga-
lenko 1998; Elston et al. 2000; Xu et al. 2000; Forrest
2001; Sham and Purcell 2001; Visscher and Hopper
2001). In addition to the squared difference, these meth-
ods also use the squared sum of mean-centered trait
values. Sham and Purcell (2001) showed that weighting
the squared sum and squared difference by the inverse
of their variances leads to a test that has similar power
to VC. The method retains the advantages of the original
H-E regression method in being computationally less
demanding than VC and, more importantly, is more
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suited to the analysis of selected samples, which are col-
lected in the vast majority of linkage studies.

Given that linkage studies typically are not simple
sib-pair designs, it would be desirable to develop a gen-
eral method of quantitative trait locus (QTL) linkage
analysis that can accommodate larger sibships and com-
plex pedigrees, while retaining the advantages of the
regression-based methods. In a recent review on QTL
linkage analysis, Feingold (2001) concludes that a key
question that remains to be answered is “…whether
there is a procedure (existing or to be discovered) that
can retain the robustness and computational conven-
ience of Haseman-Elston regression while approaching
the greater power of variance components methods.”
Here, we outline a novel procedure with these desirable
properties. This method involves regression of multi-
point IBD sharing on trait squared sums and squared
differences, among all pairs of relatives. The method
takes into account that IBD information may be incom-
plete, as is always the case with real data. We also report
the results of simulation studies that demonstrate the
properties of the method in terms of power, as compared
with that of VC, and its robustness to model misspe-
cification, non-normality, and phenotypic selection.

Method

Nonparametric linkage analysis is based on the relation
of IBD sharing at a putative locus to some function of
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trait values. The most fundamental assumption of the
proposed method is that most of the linkage information
in a pedigree is summarized by pairwise relationships:
pairwise identity-by-descent (IBD) sharing at the puta-
tive locus, and pairwise squared differences and squared
sums for the trait. In relating these two sets of variables,
the standard H-E regression treats the squared difference
as the dependent variable and IBD sharing as the in-
dependent variable. However, because sample selection
is often through trait values but almost never through
marker genotypes, it may be more natural to regard IBD
sharing as the dependent variable, to be related to func-
tions of the trait values (Henshall and Goddard 1999;
Dudoit and Speed 2000; Chatziplis et al. 2001). This is
because the estimate of a regression coefficient is not
biased by sample selection through the independent var-
iable but can be biased by sample selection through the
dependent variable. We therefore define IBD sharing as
dependent variables and the squared sums and squared
differences as independent variables in the regression
model.

Within a single pedigree, the proposed analysis is a
particular case of multivariate regression, with as many
observations as there are pairs of family members, each
contributing an estimated proportion of alleles shared
IBD. These estimated IBD sharing proportions are re-
gressed on an equal number of squared sums and an
equal number of squared differences. Note that, in this
multivariate regression, the estimated IBD sharing of a
pair of relatives is modeled by the squared sums and
squared differences of all relative pairs in the pedigree.
Since, under imperfect marker information, the full dis-
tribution of IBD sharing is uncertain, a weighted-least-
squares estimation procedure is adopted that requires
only the covariance matrix of IBD sharing. The
weighted-least-squares estimators of the regression co-
efficients can be written as a function of three covariance
matrices: (1) the covariance matrix of the IBD sharing
proportions, (2) the covariance matrix of the squared
sums and squared differences, and (3) the covariance
matrix between the estimated IBD proportions and the
squared sums and squared differences. The elements of
the last of these matrices are proportional to the additive
variance explained by a linked QTL. We will show that
the solution of this multivariate regression in a single
pedigree provides an estimate of the additive QTL var-
iance, together with its sampling variance. It is then
straightforward to combine these estimates across all
the pedigrees in a sample, weighting them by the inverse
of their variances. This also provides the sampling var-
iance of the combined estimate, and a x2 test for linkage
(an additive QTL variance of 10). The asymptotic dis-
tribution of this test statistic in large samples is ensured
by the central limit theorem.

The method outlined above does not require numerical

optimization. The computationally demanding parts of
the procedure are the calculations of the three covariance
matrices and the necessary inversions and multiplications
of these matrices. Several approximations are made in
these calculations. In particular, the covariance matrix of
IBD sharing under incomplete marker information can
be laborious to compute. As described below, we propose
to use an “imputed” value for the covariance between
the IBD sharing proportions of two pairs of relatives that
requires only the joint IBD distribution for the two pairs,
given the marker genotype data of the pedigree.

Data Structure and Notation

For a pedigree with n members, let the values of a
quantitative trait X of the family members be denoted

, respectively. It is assumed that X has beenX ,X , … ,X1 2 n

standardized to have mean 0 and variance 1 and that
the joint distribution of is multivariate nor-X ,X , … ,X1 2 n

mal. The effects of misspecifying trait mean and variance
and of non-normality have been examined by simulation
(see below). For each pair of pedigree members, we de-
fine the squared sum and the squared2S p (X � X )ij i j

difference , for . In addition, the2D p (X � X ) i ( jij i j

proportion of alleles IBD for pedigree members i and j
is denoted . An estimate of obtained from markerp pij ij

genotype data is denoted . The calculation of thesep̂ij

estimates for general pedigrees can be done by use of
the Elston-Stewart algorithm (Elston and Stewart 1971),
as implemented in extended relative-pairs analysis
(ERPA) (Curtis and Sham 1994); by use of the Lander-
Green algorithm (Lander and Green 1987), as imple-
mented in such programs as Genehunter (Kruglyak et
al. 1996), Allegro (Gudbjartsson et al. 2000), or Merlin
(Abecasis et al. 2002); or by use of Markov chain–Monte
Carlo (MCMC) methods (Heath 1997; Thompson 2000;
Sobel et al. 2001). The arrays , , and for theˆ[S ] [D ] [p ]ij ij ij

entire pedigree are inserted into the vectors , , and ,ˆS D P

respectively, each having dimension .n(n � 1)/2

Covariance Matrices of Squared Sums and Squared
Differences

Given a standardized trait, the covariance between
individuals i and j is the correlation , whose value canrij

be estimated from a preliminary analysis of the pedigree
data or from previous family or twin studies of the same
trait. For extended pedigrees, a correlation needs to be
specified for every type of relationship present. However,
it should be adequate for most polygenic traits to let
these be determined by the product of heritability and
twice the kinship coefficient. For pair , the expec-(i,j)
tations of the squared sums and squared differences are

and , respectively.E(S ) p 2(1 � r ) E(D ) p 2(1 � r )ij ij ij ij
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Table 1

Possible IBD Configurations and Prior and Posterior Probabilities
for a Sib Trio with Genotypes AB, AB, and AA, in Which the Two
Alleles Have Frequency 0.5

IBD
CONFIGURATION

FOR SIB PAIRp

pa qb1-2 1-3 2-3

1 1.0 .0 .0 1/16 1/6
2 .5 .5 .0 1/8 1/6
3 .5 .0 .5 1/8 1/6
4 .0 .5 .5 1/8 1/6
5 1.0 .5 .5 1/8 1/3
6 1.0 1.0 1.0 1/16 0
7 .5 1.0 .5 1/8 0
8 .5 .5 1.0 1/8 0
9 .0 1.0 .0 1/16 0
10 .0 .0 1.0 1/16 0

a p p prior probability.
b q p posterior probability.

For convenience, we write the vectors of these expec-
tations as and .˜ ˜E(S) p S E(D) p D

It can be shown (see appendix A) that, under the as-
sumption of multivariate normality, the covariances be-
tween squared sums and squared differences are given
by

2Cov (S ,S ) p 2(r � r � r � r ) ,ij kl ik il jk jl

2Cov (D ,D ) p 2(r � r � r � r ) ,ij kl ik jl il jk

and

2Cov (S ,D ) p 2(r � r � r � r ) .ij kl ik jk il jl

These elements define the covariance matrices , ,S SSS DD

and .SSD

Covariance Matrix of Estimated IBD Sharing

In the case of perfect IBD information, the covariance
matrix of for a pedigree can be computed from theP̂

prior probability distribution of all possible inheritance
vectors. For each inheritance vector, we calculate prior
probability p, pairwise IBD sharing proportion andpij

its square for each pair , and the cross product2p (i,j)ij

for each pair of pairs . The expected pro-p p [(i,j),(k,l)]ij kl

portion of alleles IBD for relatives i and j is given by
, and the covariance between and˜ ˆE(p ) p � pp p p pij ij ij ij

is given byp̂kl

ˆ ˆ ˜ ˜Cov (p ,p ) p pp p � p p .�ij kl ij kl ij kl

When IBD information is incomplete, evaluation of the
covariance between and is difficult, because theˆ ˆp pij kl

joint distribution of and must be evaluated overˆ ˆp pij kl

all possible genotype combinations, a feat that is gen-
erally impractical for multilocus data. We therefore sug-
gest using an “imputed” value for the covariance that
is based only on the posterior distribution of inheritance
vectors. We consider an appropriate “imputed covari-
ance” to have three desirable properties: (1) it reduces
to the full-information covariance when IBD is fully
specified by the marker genotype data; (2) it is 0 in the
absence of marker information, when the posterior IBD
distribution is equal to the prior IBD distribution; and
(3) its expectation is equal to the true covariance for all
levels of marker informativeness. Let q represent the
posterior probabilities of the inheritance vectors, then

is the estimate of given the marker ge-ˆ� qp p p pij ij ij

notype data, and an “imputed covariance” between p̂ij

and that has the above properties is given byp̂kl

ˆ ˆCov (p ,p )I ij kl

˜ ˜ ˆ ˆ( ) ( )p pp p � p p � qp p � p p . (1)� �ij kl ij kl ij kl ij kl

The quantity is the difference between the uncon-CovI

ditional covariance between the IBD sharing proportions
of two pairs of relatives and the conditional covariance
of these IBD sharing proportions given the marker ge-
notype data. This difference can be thought of as the
information provided by the marker in reducing the level
of uncertainty regarding IBD sharing. The fact that the
expectation of is equal to the true covariance isCovI

shown in appendix B. However, may be negative,CovI

seemingly implying that the marker data have increased
the uncertainty about IBD sharing. For example, if the
posterior probabilities of sharing 0, 1, and 2 alleles IBD
for sib pair are 0.5, 0, and 0.5, respectively, then(i,j)
the value of is �1/8. Our justification forˆ ˆCov (p ,p )I ij ij

using despite this curious behavior is that it satisfiesCovI

the three above properties and appears to result in cor-
rect type I error rate in our simulation studies (see be-
low). The matrix of for all pairs of IBD sharingCovI

proportions is denoted as .Sp̂

To give an example of an “imputed covariance ma-
trix,” we consider a sibship of size 3, where sibs 1, 2,
and 3 have genotypes AB, AB, and AA, respectively, and
the parents are untyped. If the two alleles A and B each
have frequency 0.5, then the possible IBD configurations
and their prior and posterior probabilities are as given
in table 1.

The vector of values of for the three sib pairs, 1-2,p̂
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1-3, and 2-3 is (0.67, 0.33, 0.33). By use of equation
(1), the “imputed covariance matrix” is calculated as

�.0139
S p .0139 .0694 .p̂ [ ]

.0139 �.0139 .0694

Covariances between Squared Sums, Squared
Differences, and IBD Sharing

If the phenotypic variance explained by the additive
effects of the QTL is Q, then the regression of onSij

is (Wright 1997; Drigalenko 1998). The regres-p̂ 2Qij

sion of on is . Hence, the re-ˆ ˆ ˆ ˆ ˆp p Cov (p ,p )/ Var (p )ij kl ij kl kl

gression of on is , andˆ ˆ ˆ ˆS p 2Q Cov (p ,p )/ Var (p )ij kl ij kl kl

their covariance is . Similarly, the re-ˆ ˆ2Q Cov (p ,p )ij kl

gression of on is (Haseman and Elston 1972),ˆD p �2Qij ij

implying that the covariance between and isˆS pij kl

.ˆ ˆ�2Q Cov (p ,p )ij kl

Because we have only “imputed covariances” between
and , we define the required covariances as follows:ˆ ˆp pij kl

ˆ ˆ ˆCov (S ,p ) p 2Q Cov (p ,p )I ij kl I ij kl

ˆ ˆ ˆCov (D ,p ) p �2Q Cov (p ,p ) .I ij kl I ij kl

These elements define the covariance matrices andS ˆSp

, respectively.S ˆDp

Regression of IBD Sharing on Squared Sums and
Squared Differences

The proposed method is based on the regression of P̂

on and . However, for families with four or moreS D
individuals, there is collinearity among the elements of

and . This is because each element is a linear com-S D
bination of two squares and a cross-product and there
are squares and cross-products, whereas theren(n � 1)/2
are elements in each of the vectors and .n(n � 1)/2 S D
For families of size �4, it is clear that there are a greater
number of squared sums and squared differences than of
their constituent squares and cross-products. To remove
this collinearity, we arbitrarily trim the vector to nD
elements, such that each individual is represented at least
once. Because all the eliminated elements of are linearD
combinations of the retained elements of and , thereS D
is no loss of information. We denote the trimmed vector
as and the corresponding trimmed covariance matricesd
as and .S , S , S ˆdd Sd dP

The independent variables and are stacked in aS d
single vector . The covariance matrix of and′Y p [S,d] Y

the covariance matrix between and are the blockˆY P

matrices

S SSS SdS pY ′[ ]S SSd dd

and

S ˆSPS p .ˆYP [ ]S ˆdP

So that the method can be applicable to selected samples,
we mean center both the dependent and independent
variables around their population means. If the mean-
centered vectors are and ˆ ˆY p Y � E(Y) P p P �C C

, then the multivariate regression equation of onˆ ˆE(P) PC

isYC

′ �1P̂ p S S Y � e ,ˆC YP Y C

where is a vector of residuals. The matrix can be′e S ˆYP

factorized into , where is a diagonal matrix withQS H QP̂

diagonal elements Q. Matrix is composed of twoH
blocks stacked horizontally, where the first block is a
square matrix with diagonal elements of 2 and off-di-
agonal elements of 0 and the second block consists of
the first n columns of a similar matrix with diagonals
of �2.

Writing as matrix , we calculate scalar�1HS Y BY C

quantities and . For a given family, the ratio′ ′ˆBP B S BˆC P

of gives an estimate of Q with sampling′ ′ˆ[BP ] / [B S B]ˆC P

variance (see appendix C). Across all pedi-′1/ [B S B]P̂

grees in a sample, an optimally weighted estimate of Q
is given by

′ ˆ[ ]� B PC

Q̂ p .′[ ]� B S BP̂

Note that these calculations require the inverse of butSY

not the inverse of . By the central limit theorem, a testSP̂

statistic that in large samples has asymptotically a 2x

distribution with 1 df under the null hypothesis is

′ 2 ′ˆ ˆˆ[ ] [ ]T p Q BP pQ B S B .ˆ� �C P

Since only positive values of Q are biologically mean-
ingful, we adopt a one-tailed test by redefining T as 0
when is negative. The resulting test statistic is dis-Q̂
tributed as a 50:50 mixture of 0 and with 1 df, under2x

the null hypothesis.
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Figure 1 Theoretical sibship NCP over squared QTL variance , obtained from equation (2) for the regression method and from appendix2Q
D for the VC method, under the assumption of a sibling correlation of 0.25.

Family Informativeness

In very large samples, approaches Q, and the testQ̂
statistic T has expected value

2 ′[ ]l p Q B S B .ˆ� P

This is the noncentrality parameter (NCP) of the asymp-
totic noncentral x2 distribution of T. The expected con-
tribution of a family to l, conditional on the trait values
of the family members, and assuming complete marker
information, is therefore . This index may be2 ′Q B S BP

used for the selection of informative families for geno-
typing. It gives values of informativeness similar to those
given by another recently proposed index (Purcell et al.
2001), provided that the latter is calculated under a
“base model” that assumes equal allele frequencies and
additive effects at the QTL.

The expected contribution of a randomly selected
family, without knowledge of trait values, is the expected
value of over all possible trait values:2 ′Q B S BP

2 ′ 2 ′ �1 ′ �1E(Q B S B) p Q E(Y S H S HS Y )P C Y P Y C

2 �1 ′ �1 ′p Q tr S H S HS E(Y Y )[ ]Y P Y C C

2 �1 ′( )p Q tr S H S H .Y P

For general families, there may be no simpler form.
However, for sibships, the only parameters in are�1SY

sibship size s and sib-pair correlation r, and is simplySP

a diagonal matrix with elements . Although1Var (p) p 8

the simplification of this expression is tedious, we have
found it to be exactly equivalent to the first non-zero
term of the Taylor expansion of the noncentrality pa-
rameter of the standard likelihood-ratio test for a QTL
in a VC model (appendix D). This turns out to be

2 ′E(Q B S B)P

2 2[ ]1 � 2(s � 2)r � (s � 4s � 5)rs(s � 1)2p Q Var (p) .2 22 (1 � r) [1 � (s � 1)r]

(2)

For large sibships, this expression gives NCPs that are
greater than the corresponding values for VC models.
The difference increases with increasing sibship size, as
shown in figure 1.

Alternative Specification in Terms of Squares and
Cross-Products

An alternative way of removing the collinearity be-
tween the squared sums and squared differences is to use
the squares and cross-products as independent variables.
In other words, the vector of independent variables willY
be the column vector of cross-products and nn(n � 1)/2
squares. The trait squares are marginally independent of



Sham et al.: Regression-Based QTL Analysis of General Pedigrees 243

IBD sharing but do nevertheless explain some variance of
IBD sharing jointly with the cross-products. The mean
vector of , required for mean-centering, will consist ofY
correlations for the cross-products and 1s for the squares.
The covariance matrix of will be given by the variancesY
and covariances of cross-products and squares, derived
by using the formulae in appendix A. The matrix isH
then defined as two blocks stacked horizontally, where
the first block is an identity matrix of dimension n(n �

and the second block is a zero matrix of1)/2 n(n �
rows and n columns. This alternative specification is1)/2

equivalent to the one described above, based on all non-
redundant squared sums and squared differences, but may
have some advantages when the method is generalized to
multivariate phenotypes.

Software Implementation

We have combined our new regression-based proce-
dure with the fast pedigree likelihood calculations pro-
vided by Merlin (Abecasis et al. 2002). To allow for
memory-efficient calculations, our implementation an-
alyzes each pedigree in turn. First, trait squared sums
and differences and their covariances are calculated for
all family members. Then, the expected allele-sharing
scores and imputed covariance matrices are calculated
at each position along the chromosome in turn and are
used to estimate the contribution of each position to the
phenotypic variance. Only one matrix inversion per fam-
ily is required, and, typically, our method performs much
faster than VC analyses.

Our implementation can also conveniently rank fam-
ilies according to their expected informativeness, on the
basis of phenotypic values (which can be useful when
selecting families to genotype), and can perform gene-
dropping simulations for calculation of empirical sig-
nificance levels. The likelihood calculations required for
obtaining IBD sharing probabilities are based on the
Lander-Green algorithm and can handle pedigrees of
∼20 individuals for multipoint analysis and ∼30 indi-
viduals for single-point analyses. Users must provide a
standard pedigree file with normalized trait values, a
genetic map for the region of interest, and an estimate
of the trait heritability (used for estimation of correla-
tions between relatives).

Simulation Studies

To explore the properties of the new regression-based
linkage test and to compare it with the VC method, we
conducted a number of simulations. All our simulations
share a number of common features. In each data set,
we simulated phenotypes for 500 sib-pairs, 333 sets of
three siblings (sib-trios), 250 sets of four siblings (sib-
quads), or 166 sets of six siblings (sib-hexes), for a total

of 1,000 phenotyped individuals in each case. When con-
ducting simulations under the null hypothesis, we ex-
amined 20,000 replicate data sets. When examining al-
ternative hypotheses to estimate power, we examined
2,000 replicate data sets in each case. We simulated a
diallelic QTL accounting for 0%, 20%, or 50% of the
trait variance, with the remaining variance due to ad-
ditive polygenic effects and random error. In each case,
we set the sum of QTL variance and polygenic effects
to be 25%, 50%, or 75% of the trait variance. We con-
ducted analyses using either a fully informative marker
and parental genotypes, to represent perfect IBD infor-
mation (a situation that might be approximated with a
set of closely spaced microsatellite markers), or geno-
types for a diallelic marker with equifrequent alleles and
no parental genotypes, to represent imperfect IBD in-
formation (an extreme situation of low information that
should not be encountered often in practice). Data were
analyzed with a new version of Merlin (Abecasis et al.
2002) that implements VC analyses and our new
approach.

We first examined whether the method performs cor-
rectly under the null hypothesis and provides adequate
control of type I error. We varied the overall additive
genetic variance from 0.25 to 0.75, arising from either
polygenic (normally distributed) effects, an unlinked ad-
ditive diallelic QTL, or a mixture of the two. Table 2
shows that, under all conditions, the average statistics2x

obtained by use of the regression approach were very
near their expected value of 0.5 (since they are 50:50
mixtures of and a point mass of zero), indicating that2x1

the expected type I error rate is not biased. As expected,
this is also the case for VC analysis. Additionally, the
average estimate of Q is zero, indicating a lack of bias.
We note that this is not the case for VC, since variance
estimates are constrained to be positive. However, this
difference is not likely to be of practical importance,
since negative estimates of Q from the new method will
also be interpreted as 0.

We next explored the power of the regression test,
for sibships of varying sizes, to detect a QTL explaining
either 20% or 50% of the phenotypic variance, while
varying the residual polygenic component. As shown in
table 3, in the case of sib pairs, power is very similar
for the two methods, with perhaps a trivial advantage
given to VC. This is the case for both the fully infor-
mative marker and the diallelic marker. Estimates of the
QTL variance are unbiased in the case of the fully in-
formative marker and are slightly low in the case of the
diallelic marker, regardless of the method of analysis.
The average statistics from simulations under perfect2x

information agree well with the theoretical values cal-
culated as noncentrality parameter plus 0.5, using equa-
tion (2) for the regression method and the equation in
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Table 2

Comparison of Regression and VC Methods under the Null
Hypothesis

STATISTIC FOR HYPOTHESISa

Perfect Marker Diallelic Marker

SUBJECTS, Q,
Regression VC Regression VC

AND GR
2x Q̂ 2x Q̂ 2x Q̂ 2x Q̂

500 sib pairs:
:Q p .00

.25 .50 .00 .49 .05 .50 �.01 .42 .08

.50 .51 .00 .52 .05 .46 �.02 .50 .09

.75 .50 .00 .50 .04 .44 �.02 .50 .09
:Q p .20

.05 .49 .00 .48 .05 .48 �.01 .41 .08

.30 .49 .00 .50 .05 .45 �.02 .49 .09

.55 .52 .00 .53 .04 .45 �.02 .51 .09
:Q p .50

.00 .50 .00 .52 .05 .45 �.02 .51 .09

.25 .50 .00 .53 .04 .44 �.03 .53 .09
333 sib trios:

:Q p .00
.25 .51 .00 .50 .03 .52 .00 .47 .06
.50 .51 .00 .50 .03 .50 .00 .49 .06
.75 .51 .00 .50 .03 .49 .00 .49 .05

:Q p .20
.05 .49 .00 .48 .03 .50 .00 .46 .06
.30 .51 .00 .50 .03 .51 .00 .50 .06
.55 .51 .00 .50 .03 .50 �.01 .50 .05

:Q p .50
.00 .51 .00 .52 .03 .50 .00 .51 .06
.25 .50 .00 .52 .03 .49 .00 .51 .05

250 sib quads:
:Q p .00

.25 .51 .00 .50 .03 .53 .00 .48 .05

.50 .52 .00 .50 .03 .53 .00 .50 .05

.75 .51 .00 .49 .02 .52 .00 .50 .04
:Q p .20

.05 .52 .00 .50 .03 .55 .00 .50 .05

.30 .51 .00 .49 .03 .50 .00 .48 .04

.55 .51 .00 .49 .02 .50 .00 .48 .04
:Q p .50

.00 .53 .00 .53 .03 .52 .00 .50 .05

.25 .49 .00 .50 .02 .50 .00 .50 .04
166 sib hexes:

:Q p .00
.25 .52 .00 .50 .02 .54 .00 .48 .04
.50 .52 .00 .49 .02 .53 .00 .48 .03
.75 .51 .00 .48 .02 .52 .00 .47 .03

:Q p .20
.05 .51 .00 .49 .02 .52 .00 .47 .04
.30 .51 .00 .49 .02 .55 .00 .50 .03
.55 .52 .00 .50 .02 .55 .00 .50 .03

:Q p .50
.00 .52 .00 .51 .02 .53 .00 .50 .03
.25 .51 .00 .51 .02 .50 .00 .48 .03

a Average x2 statistics ( ) and QTL variance estimates ( ) are based2 ˆx Q
on 20,000 simulated replicates. in all cases. “Perfect marker”v p 0.5
represents complete IBD information; “diallelic marker” has equally
frequent alleles. Q and represent QTL and residual polygenic var-GR

iances, respectively.

appendix D for the VC method (implemented in the
Web-based Genetic Power Calculator software).

When examining progressively larger sibships, we see
the regression approach showing greater power than VC,
and, for sibships of size 6, this can be as large as a 30%
increase in the estimated noncentrality parameter. This
difference appears more pronounced when we analyze
the less informative diallelic marker, although is still quite
apparent in the case of complete information.

Table 4 shows the results of simulations conducted to
explore the properties of the regression method when
selected samples of various types are analyzed. VC was
not compared, since it is known to be liberal when ap-
plied to selected samples (Dolan et al. 1999). In all cases,
the QTL and polygenic effects explained 20% and 30%
of the total variance, respectively. For each replicate,
10,000 phenotyped individuals were simulated, with
10% of the sample selected for analysis. Three different
types of selection were explored: (1) affected sibships
(ASP), where at least two members of the sibship were
required to score above a certain threshold, (2) discordant
sibship (DSP), where at least one member of the sibship
was required to score above a chosen threshold and an-
other below a chosen threshold, and (3) the most infor-
mative sibships, selected according to the criterion

as described above. Under the null case of no′B S BP

linkage to the trait locus (recombination fraction [v] 0.5),
the average is, in all cases, very close to its expected2x

value of 0.5, and Q is correctly estimated at zero. Under
the case of linkage, the regression method appears to be
performing correctly, recovering 55% of the full-sample

with the most-informative 10% of sib pairs and a fully2x

informative marker. The method also estimates the QTL
variance without any noticeable bias in all cases.

We next evaluated the performance of the regression
method when analyzing a non-normally distributed trait.
The trait was simulated as before, and the trait values of
each family were divided by a random variable with2x

12 df. This transforms a multivariate normal distribution
to a markedly leptokurtic multivariate t distribution.
Outliers 13 SD away from the mean were winsorized to
exactly 3 SD from the mean. Table 5 shows that with a
fully informative marker, the regression method has the
correct type I error rate, as evidenced by the average

statistics of ∼0.5, whereas the VC method consistently2x

produces inflated average statistics, in the range2x

0.7–0.8, as shown in table 6. However, in the case of the
diallelic marker with low information, the regression
method does show an increased type I error rate. This is
shown by both the inflated average statistics and the2x

significant proportions of replicates that exceed the 0.01
critical value. This liberal behavior can also be seen in
examination of the linked case, where the test appears
to be more powerful for the diallelic marker than for the
perfectly informative marker, in the case of the larger
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Table 3

Comparison of Regression and VC Methods under Various Alternative Hypotheses

STATISTIC UNDER HYPOTHESISa

Theoretical Perfect Marker Diallelic Marker

SUBJECTS, Q,
Regression VC Regression VC Regression VC

AND GR
2x 2x 2x Q̂ 2x Q̂ 2x Q̂ 2x Q̂

500 sib pairs:
:Q p .2

.05 3.12 3.14 3.50 .20 3.29 .18 1.43 .19 1.13 .15

.30 3.52 3.55 4.08 .20 4.14 .20 1.38 .17 1.5 .21

.55 4.36 4.41 4.80 .20 4.93 .20 1.53 .17 1.78 .22
:Q p .5

.00 19.39 20.33 19.25 .49 20.27 .47 4.44 .42 4.8 .41

.25 24.63 26.5 23.93 .48 26.99 .50 4.98 .39 6.23 .48
333 sib trios:

:Q p .2
.05 5.85 5.72 6.42 .20 5.95 .18 2.47 .19 2.07 .16
.30 6.91 6.75 7.31 .20 7.12 .20 2.76 .19 2.66 .20
.55 8.98 8.76 9.37 .20 9.16 .20 3.28 .19 3.26 .20

:Q p .5
.00 40.58 39.78 39.66 .49 39.49 .47 11.74 .46 11.28 .44
.25 53.51 53.39 51.34 .48 53.38 .50 15.03 .45 15.52 .50

250 sib quads:
:Q p .2

.05 8.68 8.24 9.33 .20 8.55 .17 3.83 .20 3.19 .19

.30 10.57 9.99 11.14 .20 10.48 .20 4.34 .20 3.99 .20

.55 14.12 13.27 14.49 .20 13.55 .20 5.45 .20 5.03 .20
:Q p .5

.00 63.43 58.26 61.83 .48 57.81 .45 21.35 .49 18.45 .48

.25 85.62 79.5 82.93 .48 80.39 .50 27.5 .48 24.91 .50
166 sib hexes:

:Q p .2
.05 14.45 12.97 15.21 .20 13.26 .19 6.31 .20 5.06 .18
.30 18.26 16.21 18.98 .20 16.69 .20 7.78 .20 6.54 .20
.55 25.14 21.97 25.82 .20 22.49 .20 10.31 .20 8.53 .20

:Q p .5
.00 111.51 90.73 107.51 .48 90.49 .48 40.89 .51 30.41 .46
.25 154.51 125.4 141.65 .46 124.07 .50 53.25 .48 40.37 .49

a Theoretical statistics were obtained analytically from equation (2) for the regression method and2x

from appendix D for the VC method. Average statistics and were obtained from 2,000 simulated2 ˆx Q
replicates. in all cases. Q and represent QTL and residual polygenic variances, respectively. “Perfectv p 0 GR

marker” represents complete IBD information; “diallelic marker” has equally frequent alleles.

sibships and a QTL explaining 50% of trait variance.
We have shown, by further simulation studies, that the
liberal behavior of the regression method, in the case of
poor marker information, is reduced as the number of
pedigrees increases. For the case where the QTL and
residual polygenes account for 50% and 25% of trait
variance, respectively, the average statistics for 250,2x

500, 1,000, and 2,000 sibships of size 4 are 1.180, 0.705,
0.628, and 0.545, respectively. For the VC method, sim-
ilar simulations of larger sample sizes show that the av-
erage statistics remain inflated, in the range 0.7–0.8.2x

Comparing the fully informative case to the comparable
situation in table 3, we see that power is lost when an-
alyzing this extremely non-normally distributed trait, but
it is still possible to detect the QTL if an informative

marker situation is available, as would be the case in a
multipoint analysis using microsatellite markers.

Next, we explored the robustness of our regression
method to misspecification of population mean, vari-
ance, and correlation, as shown in figure 2. In an un-
selected sample of 250 sibships of size 4, we simulated
a QTL explaining 20% of the variance, with polygenic
variance set at 30%, as was done for table 4. The trait
was simulated to have a mean of 0 and a variance of
1. To test the robustness of the method to misspecifi-
cation, in both the unlinked and linked cases, in panel
a, we fixed the mean to a range of values from �1 to
1, including the true value 0. In the unlinked case, we
detected a small bias in the average when analyzing2x

the diallelic marker, although no suggestion of increased
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Table 4

Average Statistics of the Regression Method in Selected Samples2x

STATISTIC UNDER HYPOTHESISa

Perfect Marker Diallelic Marker

FAMILIES AND
v p 0.5 v p 0.0 v p 0.5 v p 0.0

SELECTION

STRATEGY 2x Q̂ 2x Q̂
Efficiency

(%) 2x Q̂ 2x Q̂
Efficiency

(%)

500/5,000 sib pairs:
Random .49 .00 4.08 .20 10 .45 �.02 1.38 .17 10
ASP .50 .00 4.46 .17 11 .57 �.02 2.06 .21 15
DSP .49 .00 19.69 .22 48 .46 �.01 4.30 .18 31
INF .50 .00 22.62 .20 55 .47 �.01 5.36 .18 39

333/3,330 sib trios:
Random .51 .00 7.31 .20 10 .51 .00 2.76 .19 10
ASP .51 .00 14.70 .20 20 .52 .00 5.11 .20 19
DSP .50 .00 29.27 .20 40 .49 .00 8.80 .19 32
INF .51 .00 37.04 .20 51 .48 .00 11.07 .19 40

250/2,500 sib quads:
Random .51 .00 11.14 .20 10 .50 .00 4.34 .20 10
ASP .52 .00 22.17 .19 20 .52 .00 8.22 .20 19
DSP .50 .00 42.31 .21 38 .50 .00 13.92 .20 32
INF .50 .00 52.05 .20 47 .50 .00 17.02 .20 39

a Average statistics and obtained from 20,000 simulated replicates for , and 2,000 simulated2 ˆx Q v p 0.5
replicates for . In each case, Q p 0.2, p 0.3, and 10% of the simulated sample is selected forv p 0.0 GR

analysis. The ASP, DSP, and INF methods of selection correspond to affected sib pairs, discordant sib pairs,
and information index (see text), respectively. “Perfect marker” represents complete IBD information; “diallelic
marker” has equally frequent alleles. Efficiency is calculated as the ratio of the average statistic of each2x

selection scheme to that of the entire sample.

type I error results in the fully informative case. Mis-
specification of the variance (panel b) from 0.5 to 2 also
appears to have little impact on type I error rate. How-
ever, fixing the heritability at 0 (panel c) does result in
a slight increase in type I errors in the case of a diallelic
marker. Fixing the heritability at 1 does not have such
an effect. Turning to the issue of power under misspe-
cification (the curves representing the alternate hypoth-
eses), it appears that misspecification of the mean can
have a nontrivial impact, reducing power considerably.
However, we do not see such a large effect for the var-
iance or the heritability.

Thus far, we have explored only sibship data. How-
ever, the method is applicable to general pedigrees of
all types. Our last set of simulations deals with the case
of cousin pedigrees, where each pedigree contains 10
individuals, comprising a set of two grandparents and
their four grandchildren distributed in two sibships of
size 2 (see fig. 3). We simulated 200 pedigrees per rep-
licate and compared the performance of our regression
approach with VC in table 7. In the unlinked case, there
is little suggestion of bias in type I error rate for the
regression method, as can be seen from all average 2x

values being very close to their expected value of 0.5
for the fully informative case and showing only a hint
of inflated type I for the uninformative diallelic marker.

Average statistics are also extremely close to their2x

expected value of 0.5 for VC.
In the linked case, it appears the regression method

is again slightly more powerful than VC, for the fully
informative marker case. This is also somewhat true for
the diallelic marker, although the small difference in
power may in fact be attributable to the slightly inflated
type I error rate. However, such bias was not seen for
the fully informative case, suggesting that the increased
power is, in fact, real.

Discussion

Several methods are currently available for QTL linkage
analysis, but none is entirely satisfactory. The penetrance-
based method requires the specification of allele frequen-
cies, genotype-specific trait means, and the residual co-
variance structure (Hasstedt 1994). This method assumes
multivariate normality conditional on QTL genotype and
is computationally intensive for large pedigrees. Moreo-
ver, power is optimal only when the true QTL model is
diallelic, and it may be substantially reduced when the
underlying QTL has multiple alleles of variable effects
(Goring et al. 2001).

The VC method (Hopper and Matthews 1982; Schork
1993; Amos 1994; Eaves et al. 1996; Fulker and Cherny
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Table 5

Average Statistics of the Regression Method in Non-Normal Samples2x

STATISTIC UNDER HYPOTHESISa

v p 0.5 v p 0.0

SUBJECTS, Q,
Perfect Marker Diallelic Marker

Perfect
Marker

Diallelic
Marker

AND GR
2x a.01 Q̂ 2x a.01 Q̂ 2x Q̂ 2x Q̂

500 sib pairs:
:Q p .00

.25 .50 .009 .00 .57 .017 .02 … … … …

.50 .51 .009 .00 .63 .019 .03 … … … …

.75 .50 .009 .00 .69 .027 .04 … … … …
:Q p .20

.05 .50 .010 .00 .55 .014 .01 2.58 .14 1.28 .15

.30 .50 .008 .00 .64 .021 .03 2.57 .13 1.43 .16

.55 .49 .009 .00 .66 .023 .03 2.39 .12 1.52 .17
:Q p .50

.00 .49 .009 .00 .62 .020 .03 10.82 .33 3.93 .39

.25 .49 .009 .00 .65 .023 .03 10.10 .30 4.04 .38
250 sib quads:

:Q p .00
.25 .51 .012 .00 .60 .021 .01 … … … …
.50 .52 .011 .00 .81 .028 .04 … … … …
.75 .52 .012 .00 1.54 .037 .09 … … … …

:Q p .20
.05 .52 .012 .00 .60 .021 .01 6.14 .14 3.03 .17
.30 .52 .012 .00 .73 .027 .01 6.01 .14 3.83 .22
.55 .51 .013 .00 1.77 .038 .08 5.46 .12 5.22 .25

:Q p .50
.00 .53 .013 .00 .71 .023 .02 33.60 .35 17.43 .48
.25 .53 .013 .00 1.18 .035 .05 29.76 .31 38.14 1.01

a Average statistics, empirical levels, and obtained from 20,000 simulated replicates2 ˆx a Q.01

for , and 2,000 simulated replicates for . In each case, the trait values ofv p 0.5 v p 0.0
sibships have been transformed to a multivariate t distribution with 12 df, to simulate a
leptokurtic distribution. Q and represent QTL and residual polygenic variances, respec-GR

tively. “Perfect marker” represents complete IBD information; “diallelic marker” has equally
frequent alleles.

1996; Almasy and Blangero 1998) specifies the covari-
ances between relatives as a function of the proportion
of alleles IBD (p) at the putative QTL. This method as-
sumes multivariate normality conditional on IBD sharing
and produces liberal P values when applied to samples
selected for phenotypic extremes (Dolan et al. 1999).
Robustness to phenotypic selection can be achieved by
conditioning on trait values (Sham et al. 2000b), but this
is computationally intensive in large pedigrees because of
the need to invert the implied covariance matrices of all
possible inheritance vectors. Score tests from the VC
model have been recently derived (Putter et al. 2002;
Wang and Huang 2002), but the properties of these tests
in phenotypically selected samples have yet to be
examined.

Regression-based methods (Wright 1997; Drigalenko
1998; Elston et al. 2000; Xu et al. 2000; Forrest 2001;
Sham and Purcell 2001) have been shown to have power
equivalent to that of VC models for sib pairs (Sham and

Purcell 2001). Attempts have been made to extend the
regression approach to sibships but not to general ped-
igrees (Elston et al. 2000). Similarly, although composite
statistics have been proposed to enhance the power of
regression-based methods in phenotypically selected
samples (Forrest and Feingold 2000), this has yet to be
extended to general pedigrees.

The proposed regression-based method combines the
advantages of existing methods: (1) it is conceptually
and computationally simple; (2) it is applicable to gen-
eral pedigrees; (3) it provides an estimate of the pro-
portion of variance accounted for by the QTL; (4) it
provides a test of linkage that is asymptotically x2; (5)
it makes appropriate use of incomplete IBD informa-
tion; (6) it is applicable to samples selected for phe-
notypic extremes, provided that approximate values of
the population mean, variance, and correlations (be-
tween relatives) can be specified; and (7) it leads nat-
urally to a simple measure of family informativeness.
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Table 6

Average Statistics of the VC Method in Non-Normal Samples2x

STATISTIC UNDER HYPOTHESISa

v p 0.5 v p 0.0

SUBJECTS, Q,

Perfect
Marker

Diallelic
Marker

Perfect
Marker

Diallelic
Marker

AND GR
2x Q̂ 2x Q̂ 2x Q̂ 2x Q̂

500 sib pairs:
:Q p .00

.25 .697 .055 .549 .086 … … … …

.50 .752 .057 .726 .110 … … … …

.75 .785 .051 .781 .106 … … … …
:Q p .20

.05 .711 .056 .548 .085 1.830 .213 1.258 .150

.30 .780 .058 .721 .110 4.640 .206 3.460 .166

.55 .817 .053 .765 .105 5.276 .200 2.156 .228
:Q p .50

.00 .791 .058 .743 .111 20.166 .452 5.124 .392

.25 .831 .053 .819 .045 27.774 .500 6.821 .470
250 sib quads:

:Q p .00
.25 .709 .033 .661 .055 … … … …
.50 .727 .031 .709 .054 … … … …
.75 .739 .027 .717 .046 … … … …

:Q p .20
.05 .714 .033 .666 .055 8.765 .181 3.395 .165
.30 .718 .031 .692 .053 10.999 .201 4.465 .203
.55 .712 .026 .697 .046 14.387 .202 5.556 .203

:Q p .50
.00 .748 .031 .721 .054 24.810 .492 18.579 .446
.25 .783 .028 .752 .047 80.226 .500 59.055 .472

a Average statistics and , obtained from 20,000 simulated rep-2 2x H
licates for , and 2,000 simulated replicates for . In eachv p 0.5 v p 0.0
case, the trait values of sibships have been transformed to a multi-
variate t distribution with 12 df, to simulate a leptokurtic distribution.
Q and represent QTL and residual polygenic variances, respec-GR

tively. “Perfect marker” represents complete IBD information; diallelic
marker has equally frequent alleles.

In addition, the new test has slightly greater power than
VC in large sibships. Some of these desirable properties
follow directly from the way that the method is con-
structed; others have been established by the simulation
studies reported above.

The noncentrality parameter of the proposed regres-
sion method is equivalent to the second-order term of
the Taylor expansion of the VC likelihood-ratio test, at
least for the case of sibships. This suggests that our
regression-based method is closely related to the score
test of the VC model. It is somewhat surprising that the
regression test is more powerful than VC; this is due to
higher-order terms in the VC likelihood-ratio test. Such
terms may be particularly prominent in sibship data,
because for sibships of size �3, IBD sharing is pairwise
independent but not jointly independent (Hodge 1984;
Blackwelder and Elston 1985). Recently, Wang and
Huang (2002) and Putter et al. (2002) have indepen-
dently derived score tests from the VC model; both have

shown the modified H-E method of Sham and Purcell
(2001) to be a special case of their tests. It is unclear
whether these methods can be directly applied to se-
lected samples. Our proposed regression-based method
is applicable to selected samples and, furthermore, pro-
vides an estimate of the proportion of variance ex-
plained by the additive effects of the QTL.

The treatment of incomplete marker information by
the use of “imputed covariances” of IBD sharing is an-
other novel feature. Other authors have suggested the
use of sample estimates of variances and covariances of
IBD sharing (Dudoit and Speed 2000; Wang and Huang
2002). This has the disadvantage that sample estimates
may be inaccurate if only a small number of pedigrees
of a certain configuration are present in the sample.
Furthermore, sample variances and covariances of IBD
sharing may be different from their respective popula-
tion values for phenotypically selected samples and
therefore are likely to result in lower power. The use of
an “imputed covariance” that can be calculated from
the joint IBD probabilities for two relative pairs appears
to be simple and effective in our simulations. However,
we have not shown that the proposed definition for
“imputed covariance” is the only suitable one, and it
may be possible to find alternative definitions that are
equally appropriate. One interesting alternative defini-
tion for the “imputed covariance” is ˆ ˆCov (p ,p ) pI ij kl

, which satisfies the last two prop-ˆ ˜ ˆ ˜(p � p )(p � p )ij ij kl kl

erties that we considered desirable, but not the first one.
One problem with the proposed method is that it can

be liberal in some circumstances, as is shown in the sim-
ulations. Since the test relies on the central limit theorem
for its asymptotic distribution, liberal significance levels
can result from a combination of two factors: (1) a small
number of families contributing to the test statistic and
(2) highly skewed contributions from some families. Low
marker informativeness can reduce the effective number
of contributing families, whereas a highly leptokurtic
trait distribution can lead to highly skewed contributions
from some pedigrees with extreme scores. The combi-
nation of these two factors is why our simulations re-
vealed an inflated type I error rate for the situation where
a highly leptokurtic trait is coupled with an uninform-
ative marker. In practice, multipoint analysis should pro-
vide almost complete IBD information. Furthermore, any
apparent non-normality in the data should have been
minimized by a normalizing transformation. An addi-
tional safeguard against outlying observations that persist
after transformation is winsorization; any observations
that are �k SD from the mean are recoded to precisely
k SD from the mean (for a reasonable choice of k). If
these precautions are taken and the sample consists of a
reasonably large number of families, then the test we
propose based on the x2 distribution should provide very
accurate P values. Nevertheless, it should be straightfor-



Figure 2 Effect of model misspecification. Each point represents the average statistic obtained from 2,000 simulated replicates, containing2x

250 sib quads. The QTL and residual polygenic variances are 0.2 and 0.3, respectively. In each case, the true trait model has mean 0, variance
1, and heritability 0.5. The misspecified mean, variance, and covariance are shown on the X-axes of panels a, b, and c, respectively. “Perfect
marker” represents complete IBD information; “imperfect marker” represents a diallelic marker with equally frequent alleles.
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Figure 3 Structure for simulated cousin pedigree

Table 7

Average Statistics of the Regression and VC Methods for Cousin2x

Pedigrees

STATISTIC FOR HYPOTHESISa

Perfect Marker Diallelic Marker

v, Q, AND
Regression VC Regression VC

FOR 200GR

COUSIN

PEDIGREES 2x Q̂ 2x Q̂ 2x Q̂ 2x Q̂

:v. p 5
:Q p .00

.25 .51 .00 .50 .02 .54 .00 .50 .05

.50 .51 .00 .50 .02 .54 .00 .51 .04

.75 .53 .00 .51 .02 .55 .00 .51 .04
:Q p .20

.05 .52 .00 .51 .03 .53 .00 .49 .05

.30 .49 .00 .48 .03 .53 .00 .50 .04

.55 .50 .00 .49 .02 .53 .00 .50 .04
:Q p .50

.00 .52 .00 .52 .02 .53 .00 .51 .04

.25 .51 .00 .52 .02 .53 .00 .51 .04
:v p .0

:Q p .20
.05 4.45 .21 3.76 .18 11.75 .20 11.02 .19
.30 4.94 .21 4.43 .20 13.21 .20 12.56 .20
.55 6.26 .22 5.56 .20 16.80 .20 15.95 .20

:Q p .50
.00 26.00 .56 21.24 .46 73.85 .49 71.42 .48
.25 33.94 .56 28.27 .50 93.68 .48 93.41 .50

a Average statistics and obtained from 20,000 replicates for2 ˆx Q
and 2,000 simulated for . Each replicate has 200 three-v p 0.5 v p 0.0

generation pedigrees (see fig. 3). Q and represent QTL and residualGR

polygenic variances, respectively. “Perfect marker” represents com-
plete IBD information; “diallelic marker” has equally frequent alleles.

ward to verify significance levels for any interesting find-
ings by using Monte Carlo methods (such as gene-drop-
ping simulations). Since our method is based on linear
regression, it is ideally suited to these empirical analyses.

The proposed regression-based method provides a
practical and powerful tool for the linkage analysis of
quantitative traits. At present, the method is limited to
additive genetic effects on a single quantitative trait.
However, it has the potential to be extended to include
dominance and epistatic effects, qualitative traits, and
multiple phenotypes.
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Appendix A

Covariances of Squared Sums and Squared Differences

If , , , and are multivariate normal with means 0 and variance 1, then, from Mardia et al. (1979, p.X X X Xi j k l

95), it can be shown that

4E(X ) p 3i
3E(X X ) p 3ri j ij
2 2 2E(X X ) p 1 � 2ri j ij
2E(X X X ) p r � 2r ri j k jk ij ik

E(X X X X ) p r r � r r � r r .i j k l ij kl ik jl il jk

These expressions are used to obtain

2 2 2 2Cov (S ,S ) p E[(X � X ) (X � X ) ] � E(X � X ) E(X � X )ij kl i j k l i j k l

2p 2(r � r � r � r ) ,ik jl jk jl

and similarly for and .Cov (S ,D ) Cov (D ,D )ij kl ij kl
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Appendix B

Expectation of “Imputed Covariances” of IBD Sharing

The expectation of the “imputed covariance” of estimated IBD sharing proportions is

ˆ ˆ ˜ ˜ ˆ ˆ( ) ( )[ ]E[Cov (p ,p )] p E pp p � p p � qp p � p p .� �ij kl ij kl ij kl ij kl ij klI

The expectation of conditional on a family’s genotype combination over all possible genotype combinationsp pij kl

is equal to unconditional expectation of . Furthermore, . Therefore,ˆ ˜p p E[p ] p pij kl ij ij

ˆ ˆ ˆ ˆ ˜ ˜[ ]E[Cov (p ,p )] p E p p �p pij kl ij kl ij klI

ˆ ˆp Cov (p ,p ) .ij kl

Appendix C

Estimation of Q̂

We wish to minimize

′′ �1 �1 ′ �1ˆ ˆ[ ] [ ]F p P � S S Y S P � S S Y .ˆ ˆ ˆC YP Y C P C YP Y C

Define as the vector , then�1S HS Y EP̂ Y C

′ �1ˆ ˆF p (P � QE) S (P � QE)ˆC P C

k k

ˆ ˆp (p � Qe )G (p � Qe ) ,�� i i ij j j
ip1 jp1

where is element of . Differentiating with respect to Q and equating to 0, we obtain�1G (i,j) S ˆij P

k k k k

ˆe e QG p e p G . (C3)�� ��i j ij i j ij
ip1 jp1 ip1 jp1

Hence,

k k

ˆ� � e G pi ij j
ip1 jp1Q̂ p k k� � e G ei ij j
ip1 jp1

′ �1 �1 ′ �1 ˆp (E S E) E S Pˆ ˆP P C

′ �1 ′ ˆp (B S B) BP ,P̂ C
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with variance

′ �1 �1 ′ �1 �1 �1 �1 �1ˆ ˆVar (Q) p (E S E) E S S S E(E S E)ˆ ˆ ˆ ˆP P P P P

′ �1 �1p (E S E)P̂

′ �1p (B S B) .P̂

Appendix D

Taylor Expansion of Noncentrality Parameter of Likelihood-Ratio Test

We have shown elsewhere (Sham et al. 2000a) that the NCP for the linkage test in the VC model is l p �
, where is the covariance matrix conditional on a pattern of IBD sharing , and is evaluatedE(lnFS F) � ln FS F S p S Sp 0 p 0 p

at the expected values of (e.g., 0.5 for sib pairs).p

The expectation can be expanded around the expected values of as follows:p

2Var (p ) � ln FS Fij pE(ln FS F) p S � .�p 0 22 �pij ij

There are no terms involving first-order derivatives, because expected deviations from the mean are 0. For sibships,
the covariance between any two ps is 0, so that the second-order terms involve only the variances of p. By symmetry,
we need only consider one particular pair, say . Treating as variable and fixing all other p’s at their expectedp p12 12

values, it can be shown that isFS Fp

s�1 s�2 s�3 2 2[1 � (s � 1)r](1 � r) � 2r(1 � r) Qp � [1 � (s � 3)r](1 � r) Q p ,C C

where is the mean-centered value of . Differentiating this twice and setting to zero, we obtainp p pC 12 c

2 2 2
2 [ ]�2 1 � 2(s � 2)r � (s � 4s � 5)r Q� ln FS Fp p .2 2 2�p (1 � r) [1 � (s � 1)r]ij

There are possible sib pairs, each making an equal contribution, and so the NCP is approximated to thes(s � 1)/2
second order by equation (2).

Electronic-Database Information

URLs for data presented herein are as follows:

Genetic Power Calculator, http://statgen.iop.kcl.ac.uk/gpc/
Merlin, http://www.sph.umich.edu/csg/abecasis/Merlin/
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